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Much of the recent analysis of chaotic mixing has focused on utilizing tools and
techniques imported from dynamical systems theory. However, most techniques
require detailed information about the velocity field or fluid motion and are
restricted to conditions where the ‘degree of chaos’ is small. Symmetries provide a
method of analysis without specific reference to exact mathematical expressions.
Symmetry concepts are illustrated in terms of a prototypical system called the
eggbeater flow. Although a family of 32 different eggbeater flows can be constructed,
symmetry arguments reveal that only four of these are independent. These flows
serve to illustrate the role of islands in mixing. If a flow possesses symmetry, islands
are found in symmetric arrangements, the simplest cases being reflectional and
rotational symmetries. A knowledge of symmetries provides the basis for systematic
methods for destroying islands. These ideas are developed in terms of the eggbeater
flows, and are subsequently extended to a class of three-dimensional continuous
throughput flows — duct flows — which are of a more practical interest from an
engineering viewpoint. Three such duct flows are studied. Using symmetries, we show
that these flows are topologically identical to the eggbeater flows, even though their
geometries and flow mechanisms are quite different from the eggbeater flows. Lastly,
we demonstrate how the same methodology for destroying islands and enhancing
mixing in the eggbeater flows can be applied to duct flows.
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302 J. G. Franjione and J. M. Ottino

1. Introduction

Fluid mixing is an important operation which occurs in a variety of scientific and
engineering applications. In general, mixing occurs via three distinct mechanisms:
mechanical mixing (stretching and folding of fluid elements), breakup, and molecular
diffusion; often processes are accompanied by chemical reaction as well (Ottino
1989¢a). However, mechanical mixing is the one mechanism over which the greatest
control is possessed, and hence improving mechanical mixing provides the best
means for enhancing mixing processes in which all mechanisms are present.

The goal of mechanical mixing (henceforth referred to simply as mixing) is to
create a maximum amount of intermaterial area while consuming the least energy
possible in a given amount of time. On one level, then, the study of mixing reduces
to understanding how, why, and what types of flows are capable of efficient
stretching. A possible way to attack this question is in terms of dynamical systems.
Indeed, such an approach has proved fruitful. During the past few years it has been
established, by analysis, computation, and experiment, that all flows which exhibit
characteristics of good mixing must also exhibit the characteristics of chaos.

The formulation of a systematic mathematical theory for the analysis of chaotic
mixing, however, remains to be developed (for a review of these issues see Aref (1990)
and Ottino (1989a)). Isolated mathematical treatments are available from the
mathematics and physics literature, but no general methods of attack have been
proposed. Most theory applies to systems characterized by small perturbations from
integrability. However, in many cases involving mixing flows, there is no sensible
integrable picture to speak of. Additionally, although small perturbation techniques,
such as the Melnikov method and adiabatic invariants, provide valuable insight,
they implicitly address cases in which mixing is poor (i.e. when good mixing is
restricted to small regions of the flow or stochastic layers). Finally, most analytical
techniques require detailed information about either the fluid motion or the velocity
field. It is desirable to seek methods that are independent of the details of flow fields.

In this paper we present a few ideas, inspired by geometrical arguments, that
attempt to remedy this situation. An analysis of symmetries accomplishes this
objective. Symmetries exist whenever there are simple geometric constraints on the
fluid motion; e.g. system geometry, flow conditions, etc. Techniques can be
developed to analyse time-periodic and spatially periodic flows; an important
advantage of these techniques is that the analysis is not restricted to small
perturbations.

We have already shown in a previous paper how symmetries can be exploited to
enhance mixing, and demonstrated their use in terms of an experimental example
(Franjione et al. 1989). In this work, we put the discussion into a more general
framework, and show how to apply symmetries to a wide class of problems. The
presentation is intended to serve as a self-contained source for the subject, so that the
interested reader can learn all the details without reference outside sources. We begin
with an analysis of two-dimensional flows, in terms of a simple class of prototype
flows, called the eggbeater flow family. These flows provide a setting for a discussion
of how to find symmetries and how they can be exploited to enhance mixing. This
analysis then serves as a springboard for the analysis of systems which are of a more
practical interest from an engineering standpoint: three-dimensional continuous
throughput flows, which we refer to as duct flows. Lastly, we discuss how the same

Phil. Trans. R. Soc. Lond. A (1992)
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techniques used to enhance mixing in the two-dimensional flows can be applied to the
duct flows.

2. Mixing in two dimensions: the eggbeater flow

Mixing is necessarily poor in all steady two-dimensional flows. A two-dimensional
steady flow can be completely characterized by a time-invariant streamline portrait;
streamlines coincide with pathlines, and fluid elements are constrained to lie within
the same streamlines for all time. Thus fluid elements can never be distributed
homogeneously throughout the flow domain.

Let us now define some terminology to provide a setting for the rest of the
discussion. We refer to the mechanism by which material is deformed in space along
the streamlines in a two-dimensional steady flow as stretching. Any flow which
consists of stretching alone is a poor mixing flow. To improve mixing, material must
somehow be released from the constraint of being bounded by the same streamlines
for all time. This can be accomplished by altering the orientation of the streamline
portrait with respect to the placement of the material (or vice versa). We call this
mechanism reorientation. The only way to achieve reorientation in a two-dimensional
flow is by periodically changing the shape of the streamlines, which we refer to as
streamline modulation. (Such an effect, for example, can be achieved by changing the
topology of the streamline portrait.) Such a modulation can be achieved by various
means. One possibility is to modulate the flow via boundary conditions such as out-
of-phase motion of boundaries in Stokes flows; another possibility is to exploit the
natural oscillations in flow due an increase in Reynolds or Rayleigh number as in the
case of the Taylor-Couette flow or the Rayleigh-Bénard flow. The sequence of
actions changing the streamline sequence is referred to as the mixing protocol or flow
sequence. If the superposition of two streamline portraits taken at arbitrary times
produces crossings, then the constraint of confining streamlines disappears. If the
protocol is time-periodic, the crossings can create a special type of folding called a
horseshoe map, which is one of the signatures of a chaotic dynamical system.
Stretching accompanied by this type of folding results in effective mixing (Ottino
1989a).

The mixing, however, need not be widespread. It is possible for completely
segregated poorly mixed regions to exist in the flow simultaneously with well-mixed
chaotic regions. These regions are called islands. Fluid inside an island can never
escape, and fluid outside an island can never enter. Islands are not stagnant regions,
but in fact translate and rotate during flow. The simplest picture is revealed when the
system is examined at suitable times; in such cases the placement of the islands
become symmetric and the analysis of the system is simplified considerably.

Symmetries provide clues as to how to improve mixing and the focus here is on the
best way of combining periodic protocols to accomplish this objective. Poincaré
sections offer useful guidance in this regard. A Poincaré section is, in a very real sense,
a ‘phase plane’ of a mapping, in the same manner that a plot of dx/d¢ = v(x) is the
phase plane of the opE system. Such a plot gives an asymptotic picture of the
behaviour for long times indicating regions of ‘good’ and ‘poor’ mixing (islands).
Although the details of this picture will depend on the period of the mixing protocol,
as of now, they cannot be obtained from the equations themselves without recourse
to computation. The goal of constructing an efficient flow sequence is to enable all
material in the flow to be found, at least for some significant fraction of the time, in
regions of good mixing.

Phil. Trans. R. Soc. Lond. A (1992)
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These concepts can be illustrated in terms of a simple example which we develop
throughout the rest of the paper. Consider a unidirectional flow of the form:

da/dt = v(y), dy/dt=0.
These equations can easily be integrated to yield the motion:
x=X+vY), y=Y.

The velocity profile »(§) is still unspecified. However, no matter what the form of
v(§), the mixing is poor since material tends to become aligned with the xz-axis. To
enhance stretching, we simply rotate the system by 90°, so that material which was
originally aligned parallel with the streamlines is now oriented normal to the
streamlines. We refer to this sequence of orthogonally oriented flows as the eggbeater
Jlow (EBF), since it represents a simplified picture of the mixing mechanism in a hand-
held eggbeater (Ottino 19895). In order to eliminate loss of material, we assume that
the flow occurs in a domain which is periodic in both the x and y directions. The
domain of the flow is given by —1 <a <1 and —1 <y < 1. When a particle exits
through one side of the box, it reenters the box at the opposite side. Using the
physical model of the eggbeater, this can be interpreted to be that whenever a blade
leaves the domain, a new blade enters on the opposite side. In geometrical terms, the
flow occurs on a torus.

The overall flow may be expressed as a mapping, composed of two different parts.
The first flow acts in a horizontal direction :

Zpiy =2, +T0(Y0)s  Ynsr = Yno

where 7' is the amount of time that the first flow acts, i.e. the length of time the rod
is dragged in the x-direction. We denote this flow as H, and we write the flow as
X, = Hx,, where x = (x,y). The second flow acts in a vertical direction for time 7'
also:

Tpir = Tpy Ypig = Yn+T0(x,)

and we write this flow as x,,, = Vx,. The overall mapping may be written as the
composition of both maps, i.e.:

X,., = VHx, = Ex,,.

A sequence of actions of the horizontal and vertical components, H and V, is denoted
as VHVHVH, and is an example of a mizing protocol.

3. Algebra of symmetries

As a first step toward understanding the EBF, we first investigate the basic
geometrical properties of the motion. The first object is to exploit any algebraic
relationships which exist between ¥V and H. Note that the vertical low can be
expressed in terms of the horizontal flow. The flow V can be equivalently realized by
first rotating the entire domain by —90° about the origin, running the H flow, and
then rotating back by 90° (see figure 1). We write this as

V=RHR,
where R represents rotations by 90°; i.e. (x,y)— (—y, x). The EBF may be written as
X,., = RHR'Hx,,.
Phil. Trans. R. Soc. Lond. A (1992)
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Figure 1 Figure 2
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Figure 1. Relationship between H and V. A deformation due to the vertical flow is equivalent to
first rotating the domain by —90°, operating with the horizontal flow, and then rotating back by

90°. Note that although the velocity profile shown is even about the origin, the validity of the
relationship does not depend on this.

NS /
™

Figure 2. Symmetries between H and H™' when the velocity profile is even about the origin.
Symmetry with respect to reflections across the y-axis is shown by noting that motion due to H
can be accomplished by first reflecting across the y-axis, transforming with H™', and then reflecting
back across the y-axis. H is also symmetric to its inverse with respect to 180° rotations.

Deduction of other relationships is facilitated through the introduction of the
concept of symmetry.

There exist many definitions for symmetries, depending on the application
(Golubitsky et al. 1985; Chossat & Golubitsky 1988 ; de Vogalaere 1958 ; Greene ef al.
1981). Here, we introduce a definition of symmetry suitable to our needs. We say
that two flows, 4 and B, are symmetric to each other if a transformation S can be
found such that:

B=SA4S5".

We consider two types of symmetries: ordinary symmetry, when both A and B are
the same (in which a flow itself possesses a certain symmetry) and fime-reversal
symmetry in which B is the inverse of A4, i.e. B= SB~'S™'. (This definition is more
general than the one used in Franjione ef al. (1989), as we extend the definition to
allow ordinary symmetry.)

There exist generalized algorithms for finding the symmetries of mappings (Olver
1986) ; however, it is often simpler to use geometric intuition. The first task is to find
simple relationships involving the individual elements which compose the map in
question, and then use these relations to find some of the symmetries. For the EBF,
this involves finding relationships for H, the horizontal shear flow.

When the velocity profile »(§) is even about the origin, H is symmetric to its
inverse with respect to reflections across the y-axis, and also with respect to 180°
rotations about the origin (see figure 2). Additionally, H is symmetric to itself about
reflections across the x-axis. Symbolically, we represent these relationships as:

H=S,H'S, H=RH'R:, H-=S,HS,

where S, = (x,y) > (x, —y), i.e. reflection across the x-axis, S, = (x,y)—>(—=,¥),
reflection across the y-axis, and R? = (x,y) > (—x, —y), i.e. 90° rotations. Symmetry

Phil. Trans. R. Soc. Lond. A (1992)
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306 J. G. Franjione and J. M. Ottino

can also be interpreted in terms of particle trajectories. Consider, for example, the R?
symmetry of H. If the flow carries a particle from a to b, the same motion can be
accomplished by first rotating by 180° to a’, running the inverse flow, which takes
the particle to b’, and then rotating by 180° back to b.

Transformations are either orientation preserving or orientation reversing. The
character of a two-dimensional map M is determined by its jacobian matrix, J,,,
calculated as:

I = (02,14, 0y 14)/ (0, Oy, ).

If the determinant of J,,is —1, the transformation is orientation reversing, and if the
determinant is +1, the transformation is orientation preserving. If the trans-
formation is a symmetry, then other distinctions are made. A symmetry which is
orientation preserving (such as R? one of the time-reversal symmetries of H), is
called a rotational symmetry, or rotation, and a symmetry which is orientation
reversing (such as S, or S,) is called a reflectional symmetry, or reflection.

It can be shown that the eggbeater flow can be written as the second iterate of a
different map. Recall that above we wrote the EBF as

E=RHR'H. (1)

However, H is symmetric about the z-axis; i.e. H =S, HS,. Substituting into
equation (1) above, we obtain

E=RS,HS,R'H.

The rotation operator R is symmetric to its inverse with respect to reflections across
the xz-axis. Therefore, we have R = S, R™' S, or equivalently, RS, = S, R™. Letting
S, = RS,, which is given by S;: (z,y) - (y, x), i.e. reflection about the 45° line. This
E can be expressed as

E=S HS H= (S H)?

Thus the eggbeater map E is actually the second iterate of a second map, S|, H = E,,
which we refer to as the fundamental eggbeater map. However, although E itself
is an orientation preserving transformation, it is interesting to note that since
detJy =1, and det Jg; = —1, then det J;; = —1, and so the fundamental eggbeater
map is orientation reversing. In fact, we shall encounter another example of this
type of map in §7, when we investigate duct flows.

4. Generalized eggbeater flows

The expression of the eggbeater flow E= VH as E = RHR 'H suggests the
introduction of a family of ‘generalized eggbeater flow’, in which the directions
(forward or inverse) of R and H, and the ‘evenness’ or ‘oddness’ of the velocity
profile are unspecified :

xn+1 — R2d—1Hic—1R2b—1H?ca-1xn
= Elc,dbca xn'
The subscripts a, b, ¢ and d can be set to 0 or 1 and the sct of values is denoted as
{...}. Note that when any of {a, b, ¢, d} is set to 1, the exponent equals 1 (forward motion,

in the direction x > 0, ¥ > 0, or counterclockwise rotation), and when any {a,b,¢,d}
is 0, the exponent equals —1 (backward motion, direction x < 0, ¥ < 0, or clockwise

Phil. Trans. R. Soc. Lond. A (1992)
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Figure 3. Representative Poincaré sections of the fundamental eggbeater flows (all correspond to
T = 0.4).(a) E, (even velocity profile, orientation reversing mapping); (b) E,, (even velocity profile,
orientation preserving mapping); (¢) Eg, (odd velocity profile with maximum value at 0.25,
orientation reversing mapping); (d) E,, (odd velocity profile with maximum value at 0.25,
orientation preserving mapping).

rotation). We allow k to be ‘e’ or ‘o’, indicating evenness or oddness of v(§) about
the origin. In this notation, the eggbeater flow VH above, with v(§) even, would be
referred to as E, ;,,,. From this formulation, 32 different eggbeater flows can be
constructed. However, it can be shown that only 4 of the flows are independent. For
v(§) even, the flows are E, ,,,, and E, ,,,,;forv(£) odd, they are E, ,,, and E_ ;;,. We
refer to these four flows as Eg., Ep,, Ex, and Ep;:

E..= RH,R'H,,
Ey,. = RH.RH,,
Ey, = RH;'RH,,
E,, = RH,RH,

(The ‘P’ and ‘R’ subscripts denote whether the corresponding fundamental mapping
is orientation preserving or reversing. This aspect shall be explored in greater detail
later in this section.) Some representative Poincaré sections are shown in figure 3. For
these plots, we use

v() =2[V;+(1-V) (1-£)7]
Phil. Trans. R. Soc. Lond. A (1992)
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LN (@) (b)

Figure 4. Velocity profiles used for computational investigations of eggbeater flow.
(@) v(§) even; (b) v(§) odd.

Table 1. (a) Equivalence of eggbeater flows with an even velocity profile. All flows are equivalent to either
E,, or E,,. (b) Equivalence of eggbeater flows with an odd velocity profile. All flows are equivalent to
either E,, or Ey.

equiv. rel. equiv. rel.
(a) d b c a to by (b) d b c a to by
t + 1t 1 1 E, — r ot 1 1 1 E, —
2 1t 0 1 E, — 2 t 1 0 1 E, —
3 0 1 1 1 E. S, 3 0 1 1 1 E,
4 0 1 0O 1 E, S, 4 0 1 0O 1t E, —
5 1 0 1 0O E, R 5 1 0 1 0 E, S.,
6 1 0 0 0 E, R 6 1 0 0 0 E, S,
7 0 0 1 0 E, S, 7 0 0 1 0 E, S,
8 0 0 0 0 E, S, 8 0 0 0 0 E, ey
9 1 o0 1 1 E, S, 9 t o0 1 1 E, —
0 1 0 0 1 E, S, 0 1 0 0 1 E; —
1m0 0o 1 1 E, — m o o 1 1 E, —
2 o o o0 1 E, — 2 o0 o0 0 1 E; —
3 1 1 1 0 E, S, B3 1 1 1 0 E, S,
4 1 1 0 0 E, S, 4 1 0 0 E, S,
5 0 1 1 o0 E, R 5 0 1 1 0 E, S,
6 o 1 0 0 E, R 6 0 1 0 0 E, S,

for the velocity profile which is even about the origin and
v(§) = —4(1—[g[)IEl for —1<E<O,
=4(1—§*) &> for 0<E<1,

where a = —In2/In§, .. for the velocity profile which is odd about the origin. In the
first profile, V, is the ‘slip velocity’, i.e. the velocity of particles located on the domain
boundary. In the second, +§, .. is the location of the maximum/minimum in the
velocity profile. The two profiles are shown in figure 4.

The equivalence of each of the 32 different eggbeater flows to Eg,, Ep,, Eg, or Ep
is shown in table 1. For example, consider the flow E, ,,, = R"'H,RH,. The
rotation operator, R, is symmetric to its inverse with respect to reflections across the
x-axis, i.e.:

R=S,R'S,.
Phil. Trans. R. Soc. Lond. A (1992)
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Substituting this relation into the above expression for E, ,;;, we obtain:
Ee,0111 = SxRSz He SxR_lsx He’
However, since H, is an even function about the origin, then H,= S, H,S, (or
S,H,= H_S,), this expression can be rearranged to give:
Ee,0111 = Sx[RHe R_lHe] Sx
= Ser,llol Sx = SxERe Sx
When v(§) is odd, H, is symmetric to its inverse with respect to reflections across
the x- and y-axes, and is itself symmetric with respect to 180° rotations about the
origin. This is expressed as:
H,=S,H;'S,, H,=S,H;'S,, H,=RH R

These relationships are necessary for showing equivalence among the odd flows.
Obviously, Ep, and E}, are the second iterates of the maps RH, and RH,

respectively. We have already shown how Eg, is the second iterate of the map S, H..

Similarly, it can be shown that Ey, is the second iterate of the orientation reversing

map S, H,.
The four ‘fundamental” maps are:
Eig. =S, H., (2)
Epe = RH., (3)
Ei, =S, H,, (4)
Ep, = RH,, (5)

Earlier, we utilized symmetry properties of the individual components of the EBFs to
find these fundamental mappings. Now we focus on finding the symmetries of the
fundamental mappings themselves. We analyse the first and fourth flows in detail.

Recall that H, is symmetric to its inverse with respect to 180° rotations about the
origin. Substituting this relationship into equation (2), we have

E. = S, R°H_'R*.
Inserting the identity operator, in the form of S, S;, we have
Er. =S, R*[H.'S,]S, R

However, the term enclosed in the square brackets is simply the inverse of the initial
map. Letting S; R? = S,, i.e. the transformation (x,y) - (—y, —), reflections about
the —45° line, we obtain the relationship

EfRe = S2 Ef_fie Sz

indicating that Eyg. is symmetric to its inverse with respect to reflections across the
—45° line.

To analyse E;p,, we first make use of the fact that H is symmetric to its inverse
with respect to reflections about either the x- or y-axis. We write this as

— —1
H, =S, ,H'S,,
Therefore, E;p, can be expressed as
— —1
Eypo = RS, ,H'S,,
Phil. Trans. R. Soc. Lond. A (1992)
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Table 2. Symmetries of the independent eggbeater flows Ey,, Ey , Ey, and Eg .

fundamental time-reversal ordinary
flow full mapping mapping symmetries symmetries
E,, RH_RH, RH, —45° line none
E;. RH,R'H, S, H, —45° line none
E,, RH RH, RH, +45° lines 180° rotations
E., RH'R'H, S, . H,  +90° rotations 180° rotations

Inserting the identity operator, as R'R, we have
E., = RSZ‘y[HglR‘l]RSZ,y.

As in the above example, the term in brackets is the inverse of E,,. Letting
RS, , =S, ,, i.e. reflections about the 45° (RS,) or —45° (RS lines, Ep, is seen
to be symmetric to its inverse with respect to reflections about either the 45° or —45°
lines:

— 1
EfPo - S1,2EI'~POSI,2'

This flow possesses ordinary symmetry as well. The horizontal flow with »(£) odd is
symmetric with respect to 180° rotations about the origin:

H,= R*H R*.
Additionally, 90° rotations possess the same symmetry ; that is:
R = R*RR*.

Therefore, RH, = [R? RR?*|[R*H, R*]. But since R* = 1, this means that E,; itself is
symmetric with respect to 180° rotations about the origin:

Ep, = R°Ep, R

The orientation preserving map with H odd possesses both ordinary and time
reversal symmetry. A summary of the symmetry information appears in table 2. An
important point to reiterate here is that all the analysis, and hence tables 1 and 2,
are independent of the exact functional form for the velocity field. All that has been
specified is the even or oddness of »(§). The analysis turns out to be useful because
other periodic flows fit into the same general framework. In fact, the analysis is not
limited to two-dimensional time-periodic flows, but can also be extended to three-
dimensional spatially periodic duct flows, as shall be illustrated in §7.

5. Island symmetry

Particles located on periodic points return exactly to their initial location after an
integer number of iterations. (The eggbeater flow, essentially a flow on a 7™-torus,
does not have to have periodic points (see Grebogi et al. 1985).) As an illustration
consider the eggbeater flow with 7'= 0.4, and its corresponding Poincaré section,
shown in figure 3a. If we place a line of particles inside one of the islands, and convect
the line for four periods, the collection of particles returns approximately to its initial
condition (figure 5). Clearly, there is some particle, located in the interior of the
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Figure 5. Motion of a period-four island. A dividing line with endpoints at (—0.7,0.5) and (—0.5,0.7)
is placed in the interior of the island; the contents of the island are shown in black and white.
Starting at the top and reading from left to right, the figures show the island appearance after zero,
one, two, three, and four periods. Note the relatively small twist within the island.

island, which returns exactly to its initial location. A periodic point is formally
defined as a point which returns exactly to its initial location after a specified number
of iterates of the mapping, but not before, i.e. z is a periodic point of order »n of the
map M if z = M*z for k = n but not k < n. Obviously, if one point is n-periodic, then
there are n—1 other points which are also n-periodic.

The location and character of periodic points are one possible way of characterizing
a mapping. Periodic points can be classified as either elliptic or hyperbolic, depending
on the motion which occurs near them. Motion near hyperbolic points consists of
extension and compression and is characterized by exponential length stretch. A
closed flow which contained only hyperbolic points would mix very well. However,
in most cases, elliptic points are inevitable. The motion near elliptic points is
rotational, and is characterized by linear length stretch ; typically, the rate of stretch
is negligible as compared with that produced by hyperbolic points. Furthermore,
elliptic points are usually surrounded by invariant closed curves (as consequence of
the KAM theorem (see Guckenheimer & Holmes 1983). Any particle which is initially
bounded by an invariant curve remains bounded for all time. The presence of elliptic
points and invariant curves has a negative impact on mixing. Fluid which is located
inside a closed invariant curve is unable to mix with fluid outside it. The outermost
invariant curve of an elliptic periodic point is in fact the island boundary.

Flows which exhibit symmetry have special behaviour with regard to the location
of their periodic points: the points are always found in symmetric pairs. That is, if
a map contains a periodic point at x, then a periodic point is also located at S~'x.
The proof is as follows. A periodic point is defined as x = M*x. Say that M possesses
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time-reversal symmetry, i.e. M = SM~'S~'. Upon substituting for M in the above
expression, we obtain

x=(SM 'S Y)rx =SM*S'x.

Pre-multiplying by S~ yields S7'x = M*S~'x. Letting x’ = S 'x, then x" = M *x’
and therefore x’ is also a periodic point of M. The same relationship can be found to
hold utilizing the definition of ordinary symmetry. Thus, for example, if the
symmetry is a reflection, we know that all periodic points, and hence all islands, must
exist along the line of symmetry, or in pairs on opposite sides of the line. Although
we might not know the character of the periodic points, having a gross idea of their
location in the flow, via their symmetries, provides an important basis for the
elimination of islands.

6. Symmetry manipulation

The overall goal of practical mixing process is to accomplish the most mixing in the
least time (or consuming the least energy, etc.). For fluid systems in which surface
tension and molecular diffusion are negligible, this means finding a fluid flow (fluid
motion) which is best able to create intermaterial area between species, i.e. stretch
material interfaces. Unfortunately, there is no feasible means to predict a priori what
is the ‘best’ motion for accomplishing this task, except for trial and error. That is,
perform the experiment, or numerical simulation, involving the flow in question, and
determine if this meets the desired criteria.

The problem becomes simpler if we impose a set of restrictions. For example, we
could restrict the search to periodic protocols (e.g. ... VHVHVH), and then the
problem reduces to finding the optimal period of operation. Another approach might
be to fix the period of operation, but then find the protocol which produces the best
mixing. In the context of the eggbeater flow, the question can be posed simply as:
What is the sequence of horizonal and vertical flows which yield the best mixing?
Unfortunately, finding the true optimal solution to this problem appears to be
beyond current computational capabilities (Franjione & Ottino 1987).

It is in this framework that information such as the symmetry of flows is most
useful. Symmetries do not supply quantitative information; instead they provide
geometrical constraints on the motion. We now focus on the task of using these
symmetry constraints to suggest a sequence of flows which yields the best mixing. As
outlined above, however, we wish to devise a means for accomplishing this goal
without resorting to a detailed reconstruction of the flow (either numerically or
experimentally). The approach is as follows. Since it is true that all periodic points,
and hence all islands, will be found in symmetric arrangements in the flow field, one
simple and intuitive way to enable fluid to experience both ‘good’ and ‘poor’ mixing
flows is to alter the flow systematically so that island positions are shifted. In essence,
we are restricting the optimization problem, so that now we focus only on combining
periodic protocols. In this way, fluid which was previously trapped inside an island
might now be found in a well-mixed region. Exact knowledge of the island size and
location is not required, however, since all we want to do is shift their positions.

As an illustration, consider the flow shown in figure 3a, i.e. the flow VH (with the
even v(§)) with V, =0 and 7 = 0.4. We have shown that this flow possesses time
reversal symmetry with respect to reflections about the —45° line, indicating that
any islands in the flow should be found on this line, or in pairs on opposite sides of
the line. One way that mixing in this flow might be enhanced is to run a flow in which
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Figure 6. Application of the recursive algorithm to eggbeater flow. Initial condition for all figures
was a line of 50000 points at x = —0.9. (a) V, =0, T = 0.4. The periodic protocol, 16 x VH, is
compared with the corresponding 32 symbol recursive protocol. (b) V, = 0.55, T' = 0.7. The periodic
protocol, 32 x VH is compared with the corresponding 64-symbol recursive protocol.

o N AN LAY ¢ f

the island positions are the same, but reflected across the 45° line, i.e. the flow
S,[VH]S, = HV. A naive interpretation might suggest that operating these two
sequences in an alternating fashion could achieve the desired object. However, this is
not necessarily the case since a periodic flow field consisting of HVVH can be shown
to possess a 180° rotational symmetry. Therefore, to enhance any poor mixing
created by this flow, we apply the same logic, and run the sequence of flows in which
the island positions are reflected across the 45° line, i.e. the flow S,[HVVH]S, =
VHHYV. The key concept behind this method of choice of flow sequences is to choose
the next flow sequence which will (in principle) destroy any islands which were
created by the entire preceding sequence. This idea can be stated symbolically as
follows:
Xp=F,x,, P, =fF).

We call a sequence created using a set of rules such as these a recursive sequence. The
first equation indicates where the particle, which was initially located at x,, will be
found after the action of flow sequence P,. The second equation indicates how the flow
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sequence is to be modified. For a periodic sequence, this rule for generation of the
flow sequence is simply P, , = P,. In the discussion above, we used the rule

P,., =S,PS,P,

which was based on the concept of manipulating the symmetry, and hence the island
positions, by reflection across the 45° line. In some sense, we are implementing a
control scheme. However, it is not a feedback system, as in such a case, the control
action would be based on the ‘state variable’ x, the positions of fluid particles in the
flow. It is not a feedforward control system either, though, as in that case, the control
action would be based on a predictive model for x. In this scheme, the control action
is based on the geometrical constraints of the fluid motion, i.e. the symmetries of the
flow.

Let us now focus again on the specific case of enhancing mixing in the flow of figure
3a. In the figure 6a we show the appearance of a line of 10000 particles, initially at
x=-—0.9, and compare the mixing resulting from the periodic and recursive
protocols. The mixing due to the recursive is much better. In figure 65, we show the
enhancement in mixing achieved for a different set of flow parameters. We see again
the substantial improvement that is possible using the recursive protocol.

7. Application to duct flows

It is apparent that simple geometric analysis can give clues to the mixing
behaviour, and provides also a means for determination of flow sequences leading to
efficient mixing. So far, our analysis has encompassed two-dimensional time-periodic
flows. However, many ‘real’ flows and systems of engineering interest are three
dimensional and continuous (fluid is fed at an inlet and removed at a downstream
outlet). In this section, we apply some of the methods to the investigation of a class
of flows which are called chaotic duct flows.

Duct flows are open isochoric flows which are comprised of a two-dimensional
cross-sectional flow augmented by a unidirectional axial flow. Generally, fluid is
mixed in the cross section while it is simultaneously transported down the duct axis.
In a ‘regular’ duct flow, i.e. one in which the cross-sectional and axial flows are
independent of both time and distance along the duct axis, material lines stretch
linearly in time (Franjione & Ottino 1991), a characteristic of a poor mixing flow. For
a duct flow to exhibit good mixing, it is necessary that the flow contain some degree
of reorientation. The shape of the stream surfaces must change either in time or along
the duct axis. An experimental study of time- and spatially periodic chaotic duct
flows is presented by Kusch & Ottino (1992).

We study the mixing in a prototype spatially periodic duct flow called the
partitioned-pipe mixzer (PPM). This flow was first introduced by Khakhar et al. (1987)
and consists of a pipe partitioned into a sequence of semicircular ducts by means of
orthogonally placed rectangular plates (see figure 7). A cross-sectional motion is
induced through rotation of the pipe wall at constant speed relative to the assembly
of plates, and the axial flow is caused by an axial pressure gradient. The reorientation
in this flow occurs in the axial spatial dimension. At every length L along the pipe
axis, the orientation of the dividing plate shifts by 90°.

We assume that the cross-sectional and axial velocities are independent from one
another. The cross-sectional velocity field may be found by solving the biharmonic
equation for the streamfunction, while the axial velocity is found by solution of a
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Figure 8. (a) Cross-sectional streamlines and (b) axial velocity contours in the ppm.

Poisson equation. An exact solution exists for the axial velocity (Berker 1960); for
the cross-section velocity, we use an approximate solution due to Khakhar (1986).
The non-dimensionalized equations of the velocity field are:

v, = pr(l—r")sin 20,
vy = —fr{2—(2+v)r"}sin?6,
16n 2 sin[(2k—1)0]

R T i

where (r,0,z) are the usual cylindrical coordinate variables and g is a ‘mixing
strength parameter’, which is effectively equal to the ratio of the cross-sectional and
axial strain rates. The cross-sectional streamlines, along with the axial velocity
contours are shown in figure 8.

For spatially periodic systems, Poincaré sections are constructed by marking the
particle position in the cross section when the particle reaches the end of a spatially
periodic unit. The cross-sectional mapping in the PPm can be viewed as four distinct
submappings: (i) helical flow in a semicircular duct; (ii) rigid body rotation by 90°
about the pipe centre; (iii) a second helical flow ; (iv) rigid body rotation of —90° back
to its initial orientation. Letting F, represent the mapping of particle position from
the front to the back of a semicircular duct, the overall mapping in the periodic unit
can be expressed as

X,.. = R'E RF x, = Tx,,.
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Figure 9. (a) Twisted pipe flow of Jones et al. (1989). (b) The Kenics® static mixer.

Let us investigate the symmetry properties of F,, and of T. From the streamline
portrait, it is apparent that F, possesses two time-reversal symmetries and ordinary
symmetry. If the portrait is reflected across either the x- or y-axis, the inverse motion
results. That is:

F(‘) = Sx,yFZ)-ISz,y'

Additionally, the portrait is invariant to 180° rotations:
F, = R°F, R*.

Note that these symmetries are identical to those of the horizontal shear flow with
a velocity field which is odd about the origin. The symmetries of the overall ppm
motion can therefore be found from tables 1 and 2. That is, there are eight other
combinations of E,, F_!, and 90° and —90° rotations which would yield equivalent
Poincaré sections. This particular flow, T, possesses two time reversal symmetries
(reflection about the 45° and —45° lines), and one ordinary symmetry (rotation by
180°).

There are other spatially periodic flows which fit into this framework, some of
which have been investigated in detail, although in a different context. The flow in
a sequence of curved pipes has been studied by Jones et al. (1988). In this device,
cross-sectional mixing is induced by inertial forces, in the form of two secondary
vortices which rotate in opposite directions. Fluid is pushed down the pipe by an
axial pressure gradient. When different segments of curved pipe are fitted together
(figure 9a), the relative position of the vortices in adjacent segments change,
resulting in chaotic fluid particle trajectories, and enhanced mixing. This device shall
be referred to as the ‘T-mixer’. The Kenics® static mixer is a chaotic duct flow which
utilizes a helical twisting of a diametrically placed duct boundary to induce a cross-
sectional flow, while the axial flow is caused by a pressure gradient. Reorientation is
promoted by fitting the helical segments together in a non-smooth fashion (figure
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I'lgure 10. Topological differences among cross- -sectional flows in adJaeent elements in the (a) PPM,
b) K-mixer, and (¢) T-mixer. A ‘ + ' indicates that the sense of rotation is counter- clockw1se whlle
a — ’indicates clockw1se rotation.

9b). We refer to this device as the ‘K-mixer’. Actually, the cross-sectional flows in
these two devices are similar to those in the partitioned-pipe mixer, in that all three
contain two recirculating regions which are located on opposite sides of the pipe (for
the K-mixer, this requires that we view the motion in a coordinate system based on
the unwound helix). However, there are some important topological differences. In
the ppM, the sense of rotation of these two recirculating regions is identical, and the
sense of rotation in adjacent elements is also identical. In the T-mixer, the sense of
rotation in the two regions is opposite, but the rotation in adjacent elements is
identical. In the K-mixer, the rotation in the two recirculating regions is the same,
but the rotation in adjacent elements is opposite. This is represented schematically
in figure 10. These mixers cover three out of the four possible alternatives involving
symmetrically positioned vortices and 90° rotations.

The framework for analysis is identical to that established earlier for the eggbeater
flows. The cross-sectional motion of the T-mixer possesses time reversal symmetry
with respect to reflections across the y-axis and 180° rotations about the origin, and
ordinary symmetry with respect to reflections across the x-axis. Letting F, represent
the cross-sectional motion in an element of the T-mixer, these symmetries can be
written as

E =S,F'S, F=RFR, E=S5,ES,
Since these are identical to the symmetries in the EBF with v(£) even, the symmetries
of the composite mappings can be found in table 2. There are only two distinct T-
mixer flows, and these correspond to F,, and F,.

The cross-sectional motion for a single element of the K-mixer is the same as that
for the ppM (F,). However, the sense of rotation is opposite in adjacent elements. We
write the overall motion in the K-mixer as

X, = R'FJ'RE x, = T; x,,.

This is a similar composition of flows and rotations as that of the eggbeater flow
E, 401, Because the symmetries of the submappings are identical to those in the
eggbeater flow (with v(£) odd), then the symmetries of the composite mapping are
identical also. The K-mixer flow thus possess time-reversal symmetry with respect to
90° and —90° rotations, and ordinary symmetry with respect to 180° rotations.
Additionally, the K-mixer can be found to be given by an orientation reversing
fundamental mapping, E;,.

We wish to compare the mixing behaviour in the ppMm, T-mixer, and K-mixer by
comparing their Poincaré sections. Although the flows in the three mixers are
qualitatively similar, their topologies, and thus their symmetries, are quite different.
For an exact, quantitative study, we would need to determine the flow in each mixer,
and base the Poincaré section on this velocity field. However, to isolate the effect of
topology, we compute and compare Poincaré sections based on the mappings for the
individual mixers, while using the ppm streamlines for all three mixers. Henceforth,
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Figure 11. Poincaré sections in the PPy (top), K-mixer (middle), and T-mixer (bottom).

(@) f=2;(b) =6

we will continue to refer to the K- and T-mixers with the understanding that these
terms refer to the flows described by the ppm velocity field with the appropriate
topology. These Poincaré sections are compared in figure 11. For a given value of S,
the K-mixer exhibits the best cross-sectional mixing. It also appears that the T-
mixer mixer exhibits behaviour which is intermediate between the K-mixer and the
ppM. (It is probably unfair to the PPM to compare all three mixers at the same values
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of 4. In the ppM, £ can be varied, whereas in the T-mixer, £ is clearly a consequence
of the strength of the secondary flow, and is therefore fixed for a given T-mixer
geometry. An actual comparison based on experimental data would most likely
involve a low value g for the T-mixer.) The Poincaré sections for the T-mixer flow
display some features which are contained in the PPM and some which are present in
the K-mixer. Consider, for example, the set of Poincaré sections for g = 6, shown
in figure 116. The island in the upper left quadrant of the T-mixer flow, with its wavy
outer boundary, is strikingly similar to the islands located on the —45° line in the
ppM. The pair of islands on either side of the 45° line in the T-mixer flow also appear
in the K-mixer flow.

Barlier, we saw how identification and manipulation of symmetry in the eggbeater
flow yields a systematic means for achieving enhanced mixing. Here, we consider
symmetry manipulation in the partitioned-pipe mixer, and study the results in terms
of Poincaré sections. We adopt the following notation. The pPm flow can be written
as sequence involving two separate flows: one in which the dividing plate has a
horizontal orientation, and one in which the plate is oriented vertically. We denote
these two flows as H and V respectively. The ‘standard’ ppm flow is simply an
alternating sequence of ‘horizontal’ and ‘vertical’ flows. The base protocol, B, is
given by:

P, =VH.

Note that, as with the eggbeater flow, the horizontal and vertical flows are related

by
V = RHR™.

Because this flow is identical, geometrically, to the orientation preserving eggbeater
flow with »(§) odd, we know that this flow possesses two time-reversal symmetries,
reflections about the 45° and —45° lines. Here, we ‘rotate the flow’ by 90°; that is,
follow the flow VH with R[VH|R™' = HV. In the HV flow, then, the two symmetry
lines will switch places relative to their positions in the VH flow, i.e. what structures
were before located on the 45° line in the VH flow could be found on the —45° line
in the HV flow. The recursion relation between the current and the subsequent

protocol can be written as
P, =RP R'P,
The sequence generated is a Morse—Thue sequence. Poincare sections for f = 2 and
= 0(VH),

n=1(HVVH),
n=2(VHHVHVVH)
and n=3 (HVVHVHHVVHHVHVVH)
are shown in figure 12. The Poincaré sections are constructed by choosing 7, and then
using P, as the mapping. It is apparent that the mixing for the P, protocol is the best
one, and presumably, using the P, protocol would improve the mixing even further.
Similar enhancement of mixing is seen when the recursive protocol is utilized in the
K- and T-mixers. As the number of units in the recursive sequence is increased, the
extent of the mixing increases, as both the number and size of islands decreases.

It is important to realize, however, that a Poincaré section is a long-time picture
of the mixing behaviour (i.e. resulting from a mixer with an infinite number of
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Figure 12. Poincaré sections for ppM after symmetry manipulations for g = 2. (o) VH;
() HVVH,; (¢) VHHVHVVH; (d) HVYVHVHHVVHHVHVVH.

elements), and it is therefore an upper bound on the extent of mixing which can occur
for a particular protocol. In contrast, a mixing device used in practical applications
will have a finite length, and the mixing will not necessarily appear so effective. The
extent of the cross-sectional mixing is best visualized by examining the dispersion of
marked particles, as was done for the eggbeater flow. However, rather than present
all of these results, we simply state that mixing achieved in a finite length mixer
which uses a recursive sequence of elements is always better than that achieved in
a mixer which uses a periodic sequence.

8. Conclusions

Symmetries are a useful analytical tool because they are based on only the simplest
geometrical characteristics of a flow; detailed information is not needed. Such
information provides means of classifying flows. Indeed, in this paper, we have
characterized a family of two-dimensional flows, as well as a family of three-
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Figure 14

Figure 13

S =

Figure 13. Generation of a time-dependent change in the geometry of a two-dimensional cavity flow
by a spatially dependent change in the geometry of the cross section of the corresponding duct flow.
Cross-sectional and axial motions are caused by a diagonally moving lid, which is not shown. The
top part of the figure computed cross-sectional streamlines corresponding to three different axial
locations. Although in the figure the ‘snake baffle’ is spatially periodic, it could be utilized as an
aperiodic recursively generated shape as well.

Figure 14. Mixing in the eggbeater flow achieved utilizing the ‘Fibonacci’ protocol. All figures
utilize v(§) even with ¥, = 0 and 7' = 0.4. The initial state is a line of 50000 particles placed along
x = —0.9. Compare with figure 6a.

dimensional duct flows, in terms of their symmetry properties. Furthermore,
symmetries provide a global, rather than a local, picture of the mixing. We have
shown how this global picture can be utilized to devise effective mixing protocols, i.e.
sequences of flows which generate efficient mixing, for both time periodic two-
dimensional flows and spatially periodic three-dimensional flows. Although results
are shown for only a few parameter values, we have found in general that mixing
produced by the recursive protocol is always better than the corresponding time
periodic protocol. We have found this to be true for other flows as well (see Franjione
et al. 1989).

All of the flows discussed in this paper are discontinuous, in that the overall flows
were composed of discrete parts which were fused together in a non-smooth fashion.
However, symmetries can be deduced for continuously varying flows as well.
Symmetry is found by consideration of the velocity field, rather than the motion,
although the definition of symmetry is identical (Leong & Ottino 1989). A recursive
protocol for such a continuous system, based on the manipulation of the symmetries,
would be similar to that of a discontinuous one. For example, the ideas presented in
terms of the cavity flow in Franjione et al. (1989) can be extended continuous motion
of walls. Moreover, the methodology for continuously varying flows can be utilized for
duct flows. Flows in cavities with internal moving baffles can be used to generate
continuous throughput mixing flows; a ‘snake baffle’ in a channel with a diagonally
moving lid is just one example (see figure 13).

One could imagine a host of other flows for which an analysis of symmetries could
provide important information for subsequent enhancement of mixing. Examples
include variations of the Rayleigh-Bénard flow as well as flows able to generate
effective mixing based on inertial effects (Sobey 1985). However, possessing
symmetry is not enough. In many cases, as for example in the two-dimensional
journal bearing flow (Swanson & Ottino 1990; Chaiken et al. 1986), a flow may not
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have enough symmetries as to be able to shift or rotate them to generate effective
mixing.

Based on the examples presented in this paper, one might be tempted to draw the
conclusion that flows which possess a rotational symmetry mix better than those
with reflectional symmetry. This was especially apparent in duct flows, where the K-
mixer was much more effective than either the ppm or T-mixer for same values of 5.
However, it is important to stress that this phenomenon is not entirely general. For
example, mixing in the blinking vortex flow with co-rotating vortices, a flow which
possesses reflectional symmetry, is much better than in the same flow with counter-
rotating vortices, a flow which possesses rotational symmetry (Khakhar et al. 1986).
Thus an examination of the mixing abilities of flows cannot rely on symmetries alone
and needs to be augmented with other analyses. An exact determination of the
placement and character of periodic points would be the best course of action.

The class of mixing protocols leading to effective mixing can be augmented as well.
The protocols presented in this paper are just but one possibility. As stated in §6, the
protocols studied in this work can be expressed symbolically as:

Xy =P, x,, P, =flP),

where P, is the current flow sequence, and the ‘rule’ f{-) describes how to obtain the
next sequence. For the recursive protocol discussed in this paper, the rule is based on
symmetry considerations. However, other rules are possible. For example, consider

Pn+2=PnPn+1

with P, = H and P, = VH. We refer to a sequence generated with these rules as the
‘Fibonacci sequence’ (this idea was suggested by R. S. MacKay). Figure 14 shows
mixing in the eggbeater flow using this sequence for the same conditions as in figure
6. The mixing appears comparable, and if anything, worse. A related question, which
will no doubt occur to the reader, is the effectiveness of a random protocol. Any initial
optimism regarding the effectiveness of such a protocol is tempered by two
considerations; the first one is that the desired sequences of actions are relatively
short, not nearly enough to reach results of statistical significance. The second is the
difficulty of implementing the idea into industrial designs. Our results in fact suggest
that although it is possible for a random protocol to result in effective mixing, it
would also be possible for such a random protocol to yield poor mixing.

Finally, it should be noted that the recursive protocols which we studied here were
based on combining sub-mappings VH and HV, with the period of H and V being
identical. However, other possibilities would allow H and V to possess different
periods, or allow inverse motions, i.e. combinations involving V*H, H 'V, ete. It is
unclear whether these protocols would enhance mixing but they should be explored
as well.

This work was supported by the National Science Foundation, under grant CTS-8909954. We
thank Mr S. Jana for computing the cross-sectional flows shown in figure 13 (top) and to Dr
C.-W. Leong for figure 13 (bottom).
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igure 13. Generation of a time-dependent change in the geometry of a two-dimensional cavity flow
y a spatially dependent change in the geometry of the cross section of the corresponding duct flow.
ross-sectional and axial motions are caused by a diagonally moving lid, which is not shown. The
op part of the figure computed cross-sectional streamlines corresponding to three different axial
ycations. Although in the figure the ‘snake baffle’ is spatially periodie, it could be utilized as an
periodic recursively generated shape as well.
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igure 14. Mixing in the eggbeater flow achieved utilizing the ‘Fibonacci® protocol. All figures

tilize »(§) even with V, = 0 and 7' = 0.4. The initial state is a line of 50000 particles placed along
= —0.9. Compare with figure 6a.
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